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Abstract.

The effects of sma11-scale heterogeneity in land surface

characteristics on the large-scale fluxes of water and energy in the

land-atmosphere system has become a central focus of many of the climatology

research experiments. The acquisition of high resolution land surface data

through remote sensing and intensive land-climatology field experiments (like

HAPEX and FIFE) has provided data to investigate the interactions between

microscale land-atmosphere interactions and macroscale models. One essential

research question is how to account for the small scale heterogeneities and

whether 'effective' parameters can be used in the macroscale models. To

address this question of scaling, the probability distribution for

evaporation is derived which illustrates the conditions for which scaling

should work. An correction algorithm that my appropriate for athe land

parameterization of a GCH is derived using a 2nd order linearization scheme.

The performance of the algorithm is evaluated.



Introduction.

Research into land-atmospheric interactions suggest a strong

coupling between land surface hydrologic processes and climate (Charney et

al.. 1977; Walker and Rowntree, 1977; Shukla and Nintz, 1982; and Sud et

ai.,1990.) Due to this coupling, the issue of 'scale interaction' for land

surface-atmospheric processes has emerged as one of the critical unresolved

problems for the parameterization of climate models. To help resolve this

issue, the understanding of the scaling properties of water and energy fluxes

with their corresponding storage terms (especially soil moisture) has been an

important scientific objective of land-climatology experiments like FIFE (see

Sellers etal. 1988) and GCIP {see WCRP. 1992).

In fact, the acquisition of high resolution land surface data

through remote sensing and intensive land-climatology field experiments (like

HAPEX and FIFE) has provided data to investigate the interactions between

mlcroscale land-atmosphere interactions and macroscale models. One essential

research question is how to account for the small scale heterogeneities and

whether 'effective' parameters can be used in the macroscale models. The

current scientific thinking on this issue is mixed. For example Sellers et

al. (1992) claim that analysis of the FIFE data supports that

land-atmospheric models are almost scale invariant, a conclusion also reached

by Noilhan (personal conman_ication) using HAPEX-MOBILHY data. Counter

arguments have been made by Avissar and Pielke (1989) who found that

heterogeneity in land characteristics resulted in sea-breeze like

circulations, and significant differences in surface temperatures and energy

fluxes across the patches. The results of analyses presented later in this

paper suggest that soll moisture is the critical variable that controls the



non-linear behaviour of land-atmospheric Interactions. and the effect Is most

pronounced when soil moisture heterogeneity Is such that part of the domain

ts under soil-vegetation control and part ts under atmospheric control.

The understanding of the scale problem Is critical for new climate

projects such as the Global Energy and Water Experiment (GEWEX) or the Earth

Observing System (Eos). It ts also important for the parameterization of the

macroscale land-surface hydrology in climate models, and crucial in our

understanding In how to represent sub-grid variability In such macroscale

mode ls.

From a modeling perspective, it's important to establish the

relationship between spatial variability in the inputs and model parameters.

the scale being modeled and the proper representation of the hydrologic

processes at that scale. Figure 1 presents a schematic for modeling over a

range of scales. Let us consider this figure tn light of the terrestrial

water balance, which for a control volume may be written as:

(_y = (P) - (E) - (Q)
(1)

where S represents the moisture in the soil column. E evaporation from the

land surface into the atmosphere, P the precipitation from the atmosphere to

the land surface, and Q the net runoff from the control volume. The spatial

average for the control volume is noted by (o).

Equation {1) is valid over all scales and only through the

parameterization of individual terms does the water balance equation become a

'distributed' or 'lumped' model. By "distributed' model, we mean a model

which accounts for spatial variability In inputs, processes or parameters.



Lumped Versus Distributed Models.

Figure 1 presented a framework for considering the relationship

between distributed and lumped models. Wood et al. (1988), Wood et al.

{1990), Wood and Lakshmi (1993) studied the behaviour of aggregated inputs

and the resulting hydrologic responses which lead to the concept of the

representative elementary area, a scale where a statistical representation

can replace actual patterns of variability. In this paper we compare the

output between a mcroscale, distributed model and a lumped model to try and

determine when the macroscale model provides an accurate response when

compared to the average of the distributed model.

Two distributed model are used in latter sections: one is based on

the model described in Famiglietti and Wood (1992) (referred to as TOPLATS -

Topgraphic-Land-Atmospheric-Transfer-Scheme) and is an extension of the model

described in Famiglietti et al. (1992); these models have been applied to the

intensive field campaifsn_ periods (IFCs) during FIFE of 1987. TOPLATS can

include variability in topography, soils, net radiation and vegetation. The

first two, topography and soils, leads to variations in soil moisture under

the TOPMODEL framework; the latter two lead to variations in potential and

actual transpiration. The second model (Wood et al., 1992) described here

has variations in infiltration capacities across a catchment of GCH grid

square and is referred to as the VIC model. This model has been used in GCH

climate simulations (see Stature et al, 1993) and is the model used in this

paper to demenstrate the impact of a second order correction term to the

lumped model to account for sub-grid heterogeniety.

Derived Distribution of Soil Moisture and Evaporation.

The concept of the representative elementary area leads to a

statistical description of the sub-grid variability in water table depths,



soil moisture, evapotranspiration, and so forth. Nodels at this scale are

referred to as macroscale, distributed models. For TOPIATS, the distribution

in the soil-topographic index leads to a distribution in water table depths

(see Beven and Kirkby, 1979; Wood et al., 1990; or Famigliettl et al., 1992).

From the distribution of water table depths z, and the soil characteristic

relations which relates the soil matrix head, _. to soil moisture e as a

function of soil properties, the statistical distribution for surface soil

moisture can be derived. Certain assumptions are usually applied, for

example a steady state vertical flow which leads to @_l@z = 1. Actual

evaporation e (or transpiration from vegetation) depends on the availability
a

of soil moisture (i.e. a soil controlled rate) and the atmospheric demand for

moisture; the actual evaporation being the minimum of the two rates. Thus

given the atmospheric demand and the the statistical distribution of soil

moisture, the distribution of the actual evaporation can be derived. For

simple functional forms the mapping of z _ e _ ea can be done analytically;

in any case it can be done through simulation. Figure 2 provides some

results using TOPLATS for two conditions: Figure 2a is for quite dry

conditions - low water table - for two times during the day. Figure 2b is

for the same dirurnal times but for a wetter (but not extremely wet)

condition. 3_ne parameters for the curves are taken from Famiglietti and Wood

(1992) and represent conditions for Kings Creek area of FIFE in Kansas. The

figures have been divided into four panels that show the derivation of the

bare soil evaporation distribution. Panel (i) in the lower right corner

gives the probability distribution for water table depths derived from the

soil-topographic index of TOPLATS, and soilwater table depth to surface soil

moisture as discussed ewater table depth to surface soil moisture as

discussed earlier in this section. These two figures could gewater table

depth to surface soil moisture as discussed earlier in this section. These



two figures could generate a derived probability distribution for surface

soil moisture. This is not shown here. The upper left portion of the figure

(iii) gives the relationship between surface soil moisture and actual

evaporation for the two times during the day. The maximum evaporation rate

is the potential rate, which is lower during the early morning and late

afternoon. For portions of the catchment where surface soll mositure is

high, the actual evaporation rate is equal to the potential rate. For drier

areas, the rate is lower. The resulting probability distribution for the

actual evaporation is shown in the lower left portion of the figure. This

panel is divided into two, the top giving the distribution for the time

related to the lower potential evaporation rate.

Inspection of the derived distributions for the two times and two

conditions reveals that for the very dry conditions the distribution for

evaporation is narrow and the average water table depth can be used to

estimate the average evaporation rate. This is because the soil moisture -

evaporation function is essentially linear in the range of soil moistures

representing the dry conditions. For the wetter condition, the function is

non-linear and the range of soil moistures contain areas which are very dry

(having low evaporation rates) and wet (having rates at potential. ) If the

conditions were even wetter, then the distribution of evaporation rates would

be at the potential rate. It is at these intermediate conditions where the

non-llnearities appear to have the greatest impact.

Comparisons between the average bare soil evaporation and that

estimated using the average depth to the water table are given in Table 1 for

both conditions and the two times. From Figure 2 and Table 1 it is clear

that dry conditions during periods of high atmospheric demands result in



evaporation rates that are biased low. During periods with high soil

moisture (or extremely low soil moisture} or during early or late times

during the day when the atmospheric demands are low, the bias from using the

average water table depth is minimal.

To test the sensitivity due to dry soll conditions and to compare

the distributed water-enerKy balance model (TOPLATS) to a lumped

representation (one-dimensional model or a first order model), comparisions

were made between the models for 5 days during the October 1987 FIFE

intensive field campaign. IFC-4. This period had the driest conditions

observed during the 1987 experiment. Figure 3 shows the simulations for

October 5 - 9, 1987. The models were run at a 0.5 hour time step to capture

the diurnal cycle in potential evapotranspiration. Three models are

compared: a fully distributed model, a macroscale model in which the spatial

variability is considered statistically and a lumped one-dimenslonal model in

which parameters and inputs are spatially constant.

The one-dimensional model predicts well the evapotranspiration

during the morning and late afternoon when the atmospheric demand is low. but

fails to accurately predict this flux during the middle portion of the day

when soil and vegetation controls limit the actual evapotranspiration. It is

during this period that the sensitivity is high and by ignoring the spatial

variability in soil moisture the lumped model serverely underestimates the

catchment-scale evapotranspiratlon. During wet periods, the one-dimenslonal

model may work quite well. This complicates the linkage between a

distributed and lumped representation since the appropriateness of the

simpler representation varies with the state of the system.



Linearized, 2nd Order Model fQr Sub-grid yariability.

While these results imply that distributed models are needed to

accurately account for sub-grid variability in soil moisture and the

resulting evapotranspiration, such models my be computationally burdensome

when incorporated within a GO4. An alternative approach would be to develop

correction schemes for the often used "lumped' models. Such a scheme should

have correction terms that vary with soil moisture conditions.

A lumped representation {or what will also be referred to as a

one-dimensional representation) is obtained by using spatially constant

values for 'state' variables; in the case of TOPLATS this would be the

soil-topographic index and vegetation parameters; in the case of VIC the soll

moisture. The effect of representing the distributed model by a lumped

model, or equivalently by replacing the spatially variable parameters and

inputs by average values, will depend on nonlinearities in the model.

Conceptually this can be seen by considering a second order Taylor's series

expansion about the mean for the function y = g[x,O] where O are fixed

parameters and x variable with mean p(x) and variance a(x). A first order

approximation for y is _l(y) -_ g[p{x),O], while a second order approximation

would be

U2(y ) -_g[_(x).e] + g dx2 p(x)

Differences between pl(y) and _2(y ) depend on the magnitude of the

second term in equation (3) -- the sensitivity term. As an illustrative

example, consider the estimation of downslope subsurface flows, qi' within

TOPLATS with and without considering variability in the local water table zi.

TOPLATS relates qi to zi by qi = Tir_an_ exp(-f zi). Thus a first order

approximation of the mean subsurface flow would be



_1 (qi) = Ti_ exPC-f _) (4)

while a second order approxtn_tion would be

1 )2
_2(ql) = Titan D exp(-f _) + _ { TltanD f expC-f _) oCzi) (5)

If we scale _2(qi) by pl(qi) and recognize that

aT

f2 o(In e
o(zi ) = TitanD. ) (6)

we obtain

_2(qi) aT e

pl(qi) = 1 + 0.5 o(In Titan_ ) (7)

Analysis of the soil-topographic index for Kings Creek yields a variance of

3.25. This results in the first order estimate for qi of being biased low by

approximately 65%. Since the subsurface flows and the local water table are

related and since the local water table depth effects the surface soil

moisture which subsequently determines the soil evaporation and infiltration

rates, it's clear that the lumped model my very well lead to significant

biases in the water balance fluxes.

For the more complex functions used for bare soil evaporation and

transpiration, the sensitivities can be determined through simulation. For

these functions the sensitivities will change with the state of the catchment

(wet or dry). For example Figure 4 gives the vegetation transpiration and

soil exfiltration capacities used to model the FIFE data (Famiglietti and

Wood. 1992). Notice that at low and high soil moisture values the

transpiration capacity function is essentially linear and the sensitivity

would be low to soil moisture variations in these ranges. For volumetric

moisture contents in the range 0.2 - 0.3. the sensitivity of the

transpirtaion capacity function is high. As can be seen from Figure 4.

sensitivity characteristics for soil exfiltration capacity would be high for

soil moisture values greater than about 0.3.



moisture, which for any fractional area with capacity i greater than i° can

be estimated as e = io_/i, where _ is the soil porosity. Using the results

for a Beta distribution between Eio.im_ results in a mean and variance for i

conditional upon l)i o of

--i= io + (im-io)l(l+B)

B

Var(i I = (im-io 12 (l+BI2(2+B)

(11)

(12)

A second order mean soil moisture can be estimated using (71 as

m

e-
io_ io_

+ _Var(i) (131
i i

(ion)2
__Var(il (141Var(Ol - -- 4

1

To estimate bare soil evaporation we can use a Philip's form of the

-1/2
exfiltration capacity (Eagleson. 19781 which is of the form E = 0.5 S e t

where S is a desorptivity term that can be written in the form
e

Se = K(e-Or IC/2. Here K and C are parameters which depends on
soil

characteristics. Using the mean and variance of e will yield a second order

model for the mean soil evaporation rate whose sensitivity will depend on the

variance of e and the sensitivity term for the evaporation function. After

some simple algebra, the sensitivity term d2E/de 2 can be written as

cI I er12

where E is evaluated at e, and er is the residual soil moisture.

(15)

To test the algorithm and compare it with the distributed VIC

model, simulations were run varying the initial soil water capacity (Wol and



for different shape parameters for the distribution of infiltration

capacities. (see equation 8). The simulations used potential evaporation

data from IFC-d of FIFE'87. The following initial parameters were used: a

maximum infiltration capacity, im = 30.5 cmand a shape parameter of B = 0.3.

= 10 cm yield the results shown
Using an initial wetness correspondin_ to i°

in Figure 7. The solid line represents the distributed VIC model in which

evaporation is estimated using 100 slices of the soil moisture distribution.

The dotted line is the solution using the average value of soil moisture for

where i > i (i.e. a 1st order linear model} and the dashed line is the 1st
0

order model plus the correction term (i.e. the 2nd order, linearized model.)

For this case, the correction term is about 50% of the estimate using Just

the average soil moisture. If the conditions are wetter than Figure 7, i.e.

have i = 15 cm, then we get the results shown in Figure 8. Here the lumped
0

• =5model does very well. If conditions drier than Figure 7 prevail i.e. i°

cm (which is very dry) then the linearized model does very poorly; as shown

in Figure g.

The results do depend on the value of B, the shape parameter. For

example having B = 1.3 and i° = 10 cm (the conditions of Figure 7) resulted

in much better performance of the correction algorithm as can be seen in

Figure 10. As shown in Stamm et al. (1993), the distribution of B ranges

globally from about 0.3 to 2.5 suggesting that the applicability of such a

correction algorithm may be widespread. Furthermore, it can be determined

before hand where the algorithm should work, and under what soil moisture

conditions. This suggests that for those 004 grid squares with sufficient

moisture or favorable infiltration capacity shape parameters, the simple 2nd

order algorithm can be implemented. For condition too dry, the distributed

model can be run for those particular time steps. This approach would lead

to the most efficient and accurate computational effort.



Conclusions

The effect of subgrid variability in soil moisture on evaporation

has been investigated with the aim of resolving whether effective (or

average} values for soil moisture can replace the distribution found within a

catchment or GEWgrid square. It appears that there is a critical range of

intermediate values for which the subgrid variability has a significant

impact of grid total evaporation (and transpiration}. This arises from the

non-llnearity between soil moisture and evaporation within this critical

range, and the essentially linear behavoiour outside this range.

This lead to an initial attempt in developing a 2nd order,

linearized, model for evaporation that could be incorporated with GO4s.

Initial performance of this algorithm is encouraging with the correction term

representing about 50_ of the evaporation predicted based on only using the

average soil moisture value. For extremely dry conditions the linearized

model still under estimates evaporation which my result in using the fully

distributed model in these conditions.
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Table 1. Average Evaporation Rates

Soil
Condition

Dry
Wet

Average based on the

Variable Evaporation

Potential Evaporation (mm/hr)

Low I" High

O.051 O. 037

0.11 0.088

Average based on using

average z

Potential Evaporation (mm/hr)

LOW High

0.046
0.097



Figure 4: Vegetation transpiration capacity and bare soll evaporation

capacities as functions of soil moisture (from Famiglietti and Wood, 1992).

Figure 5: (a) Actual soil evaporation for five different times during a day,

notice that the actual level is the minimum of the capacity (figure d) and

the potential. (b) _e evaporation sensitivity term @2EslOe2 for the same

times as in (Sa).

Figure 6: _e vegetation transpiration sensitivity term @2Tv/@O2.

Figure 7: C_mparisons of model derived latent heat estimates using the

distributed VIC model for medium dry conditions, a 1st order linear model and

a 2nd order linear model. Pamameters for the simulation are given in the

text.

Figure 8: Comparisons of model derived latent heat estimates using the

distributed VIC model for wet conditions, a 1st order linear model and a 2nd

order linear model. Pamameters for the simulation are given in the text.

Figure 9: Comparisons of model derived latent heat estimates using the

distributed VIC model for very dry conditions, a 1st order linear model and a

2nd order linear model. Pamameters for the simulation are given in the text.

Figure 10: Comparisons of model derived latent heat estimates using the

distributed VICmodel for the moisture conditions used in figure 7 and a

modified soil capacity shape parameter. Also shown are a 1st order linear

model and a 2nd order linear model. Pamameters for the simulation are given

in the text.
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